Visual Stability and the Motion Aftereffect: A Psychophysical Study Revealing Spatial Updating
نویسندگان
چکیده
Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception.The motion aftereffect (MAE) occurs after viewing of a moving stimulus as an apparent movement to the opposite direction. We designed a saccade paradigm suitable for revealing pre-saccadic remapping of the MAE. Indeed, a transfer of motion adaptation from pre-saccadic to post-saccadic position could be observed when subjects prepared saccades. In the remapping condition, the strength of the MAE was comparable to the effect measured in a control condition (33±7% vs. 27±4%). Contrary, after a saccade or without saccade planning, the MAE was weak or absent when adaptation and test stimulus were located at different retinal locations, i.e. the effect was clearly retinotopic. Regarding visual cognition, our study reveals for the first time predictive remapping of the MAE but no spatiotopic transfer across saccades. Since the cortical sites involved in motion adaptation in primates are most likely the primary visual cortex and the middle temporal area (MT/V5) corresponding to human MT, our results suggest that pre-saccadic remapping extends to these areas, which have been associated with strict retinotopy and therefore with classical RF organization. The pre-saccadic transfer of visual features demonstrated here may be a crucial determinant for a stable percept despite saccades.
منابع مشابه
Visual stability across combined eye and body motion.
In order to maintain visual stability during self-motion, the brain needs to update any egocentric spatial representations of the environment. Here, we use a novel psychophysical approach to investigate how and to what extent the brain integrates visual, extraocular, and vestibular signals pertaining to this spatial update. Participants were oscillated sideways at a frequency of 0.63 Hz while k...
متن کاملMotion mechanisms with different spatiotemporal characteristics identified by an MAE technique with superimposed gratings.
We investigated spatiotemporal characteristics of motion mechanisms using a new type of motion aftereffect (MAE) we found. Our stimulus comprised two superimposed sinusoidal gratings with different spatial frequencies. After exposure to the moving stimulus, observers perceived the MAE in the static test in the direction opposite to that of the high spatial frequency grating even when low spatia...
متن کاملMotion in depth from interocular velocity differences revealed by differential motion aftereffect
There are two possible binocular mechanisms for the detection of motion in depth. One is based on disparity changes over time and the other is based on interocular velocity differences. It has previously been shown that disparity changes over time can produce the perception of motion in depth. However, existing psychophysical and physiological data are inconclusive as to whether interocular vel...
متن کاملStrength of early visual adaptation depends on visual awareness.
We measured visual-adaptation strength under variations in visual awareness by manipulating phenomenal invisibility of adapting stimuli using binocular rivalry and visual crowding. Results showed that the threshold-elevation aftereffect and the translational motion aftereffect were reduced substantially during binocular rivalry and crowding. Importantly, aftereffect reduction was correlated wit...
متن کاملRebounding V1 activity and a new visual aftereffect.
A serendipitous observation led to this study of V1 activity rebounds, which occur well after stimulus offset, and their relationship to visual aftereffects. We found that when a stimulus bar and background were simultaneously turned off, there was strong delayed rebounding activity (distinct from any off response). The neural rebound started 350-500 ms after stimulus offset, and its magnitude ...
متن کامل